KATA PENGANTAR

Puji syukur kami hantarkan kehadirat Tuhan Yang Maha Esa, karena Buletin Informasi Meteorologi yang merupakan produk publikasi dari Stasiun Meteorologi Klas III Umbu Mehang Kunda Sumba Timur ini pada akhirnya dapat terbit. Informasi Meteorologi yang disajikan dalam buletin ini merupakan data hasil pengamatan parameter — parameter cuaca (meliputi : Suhu Udara, Tekanan Udara, Kelembaban Udara, Curah Hujan, Penyinaran Matahari dan Angin) dan fenomena cuaca lainnya yang terjadi serta Pelayanan Umum yang dilakukan sepanjang bulan Maret 2019 Stasiun Meteorologi Klas III Umbu Mehang Kunda Sumba Timur.

Saya ucapkan Terima Kasih bagi seluruh Pegawai Stasiun Meteorologi Klas III Umbu Mehang Kunda Sumba Timur yang telah bekerja dengan baik, penuh disiplin, dedikasi dan tanggung jawab sehingga Buletin dapat terbit.

Harapan kami, semoga Buletin Meteorologi yang kami sajikan dapat memberikan manfaat dan acuan bagi para pembaca khususnya bagi masyarakat Kabupaten Sumba Timur dan masyarakat umum diluar Kabupaten Sumba Timur yang kami sajikan masih jauh dari kesempurnaan baik dari segi isi maupaun tampilan, untuk itu kami sangat mengharapkan adanya masukan, kritik dan saran yang konstruktif untuk penyempurnaan kedepan,

Semoga buletin ini bermanfaat sebagai acuan dalam pengambilan kebijakan bagi pihak – pihak yang berkepentingan.

Waingapu, 08 April 2019 Kepala Stasiun Meteorologi Umbu Mehang Kunda Sumba Timur

Elias Lambertus Lima Helu NIP.196307231988121001

DAFTAR ISI

KAT	ΓA PENGANTAR	1			
DAF	FTAR ISI	2			
PEN	IDAHULUAN	3			
DINA	AMIKA ATMOSFER	4			
ANA	ALISA DINAMIKA ATMOSFER BULAN MARET 2019.	5			
PRA	KIRAAN CURAH HUJAN	7			
I.	SUHU UDARA				
	1.1. SUHU UDARA PERMUKAAN HARIAN	8			
	1.2 SUHU UDARA MAXIMUM HARIAN	9			
	1.3 SUHU UDARA MINIMUM HARIAN	10			
II.	TEKANAN UDARA	11			
	TEKANAN UDARA DIATAS PERMUKAAN LAUT	12			
	TEKANAN UDARA DIATAS PERMUKAAN DARAT	T13			
III.	CURAH HUJAN	14			
IV.	KELEMBABAN UDARA	15			
	GRAFIK KELEMBABAN UDARA	16			
V.	PENGUAPAN	17			
	GRAFIK PENGUAPAN	18			
VI.	PENYINARAN MATAHARI	19			
	GRAFIK PENYINARAN MATAHARI	20			
VII.	ANGIN	21			
	ANEMOMETER	22			
	WINDROSE	23			
INFO	ORMASI PELAYANAN UMUM	24			
	LAPORAN PRODUK METEOROLOGI PUBLIK	25			
	INFORMASI CUACA BERMAKNA	26			
	SERBA SERBI METEOROLOGI	35			

PENDAHULUAN

Meteorologi adalah ilmu yang mempelajari tentang cuaca dan iklim. Cuaca diartikan sebagai keadaan atmosfer yang terbentuk oleh adanya proses pertukaran sifat antar bagian atmosfer serta antar atmosfer dan lingkungannya yang terjadi pada suatu daerah dengan cakupan wilayah yang terbatas (sempit) dan waktu yang singkat. Sedangkan iklim merupakan keadaan atmosfer yang terjadi pada suatu daerah yang luas dan dalam waktu yang relatif lama. Meteorologi berkembang dari negara – negara maju yang pada umumnya terletak di daerah subtropis dengan 4 (empat) musim diantaranya: musim panas (summer), musim gugur (autumn), musim dingin (winter), musim semi (spring).

Meteorologi Indonesia tidak mengenal 4 (empat) musim seperti yang disebutkan di atas karena letak secara Geografis pada daerah Equator atau lintang rendah. Sehingga wilayah Indonesia mempunyai keunikan dan keistimewaan tersendiri di bandingkan dengan daerah – daerah yang lain. Indonesia hanya mempunyai 2 (dua) musim yaitu : musim hujan (reany season) dan musim kering (dry season).

Berdasarkan Peraturan Kepala Badan Meteorologi, Klimatologi dan Geofisika Nomor: KEP.03 Tahun 2009 sebagai tindak lanjut dari Peraturan Prisiden RI Nomor 61 Tahun 2008 tentang BMKG, dimana Badan Meteorologi, Klimatologi dan Geofisika atau BMKG adalah Lembaga Pemerintah Non Departemen yang bertanggung jawab kepada Presiden. BMKG melaksanakan tugas pemerintahan di bidang Meteorologi, Klimatologi, Kualitas udara dan Geofisika.

DINAMIKA ATMOSFER

1. El-Nino dan La-Nina

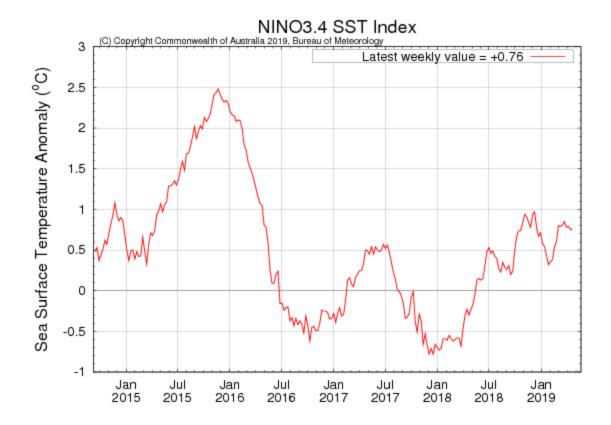
El-Nino merupakan fenomena iklim global dari sistem interaksi lautan atmosfer yang ditandai memanasnya suhu muka laut di Ekuator Pasifik Tengah (Nino 3.40) atau anomali suhu muka laut di daerah tersebut possitif (lebih panas dari rata-rata). Sementara, sejauh mana dampak El Nino pada iklim di Indonesia, sangat tergantumg dengan kondisi perairan di wilayah Indonesia. Fenomena El Nino yang berpengaruh di wilayah Indonesia diikuti dengan berkurangnya curah hujan secara drastis, baru akan terjadi bila suhu perairan Indonesia lebih dingin dari kondisi normalnya. Namun jika kondisi perairan Indonesia cukup hangat , maka tidak berpengaruh pada kurangnya curah hujan secara signifikan di Indonesia. Disamping itu, mengingat luasnya wilayah Indonesia, tidak seluruh wilayah Indonesia terdampak El Nino.

Sedangkan La Nina merupakan kenbalikan dari El Nino ditandai dengan anomali suhu muka laut negatif (lebih dingin dari rata-rata) di Ekuator Pasifik Tengah (Nino 3,4). Fenomena La Nina secara umum menyebabkan curah hujan di Indonesia meningkat bila dibarengi dengan menghangatnya suhu muka laut di wilayah perairan Indonesia. Demikian El Nino, La Nina juga tidak berdampak ke seluruh wilayah Indonesia.

2. Dipole Mode

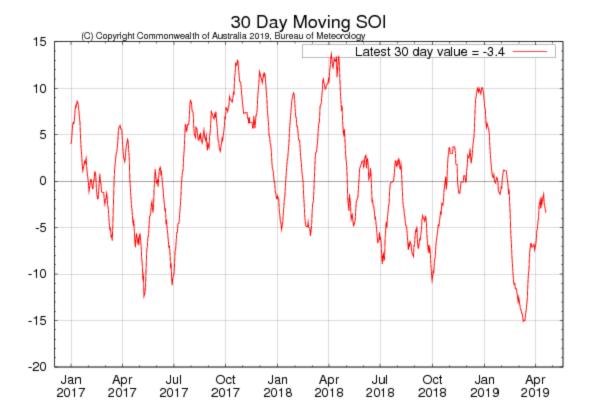
Dipole Mode merupakan fenomena interaksi laaut-atmosfer di Samudra Hindia yang dihitung berdasarkan perbedaan nilai (selisih) antara anomali suhu muka laut perariran pantai timur Afrika dan perairan di sebelah barat Sumatera. Perbedaan anomali suhu muka laut dimaksud disebut sebagai Dipole Mode Indeks (DMI).

Untuk DMI positif, umumnya berdampak berkurangnya curah hujan di Indonesia bagian barat, sedangkan nilai DMI negatif, secara umum berdampak meningkatnya curah hujan di Indonesia bagian barat.

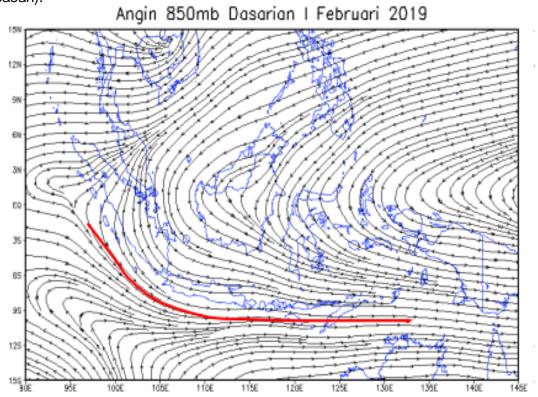

ANALISIS DINAMIKA ATMOSFER BULAN MARET 2019

Hal-hal analisis di sini meliputi analisa terhadap perkembangan ENSO ,SOI dan Aliran Masa Udara di Indonesia.

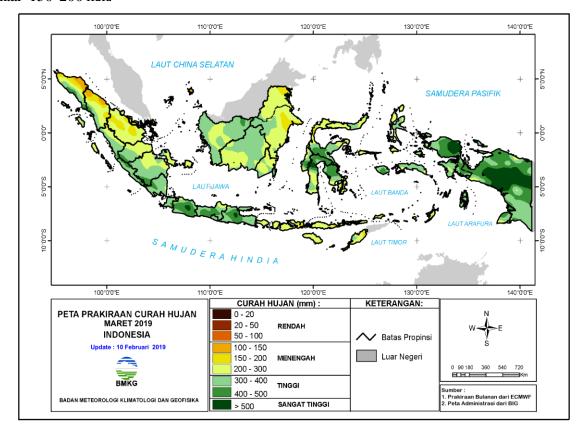
a. Perkembangan ENSO


ENSO pada bulan Maret 2019

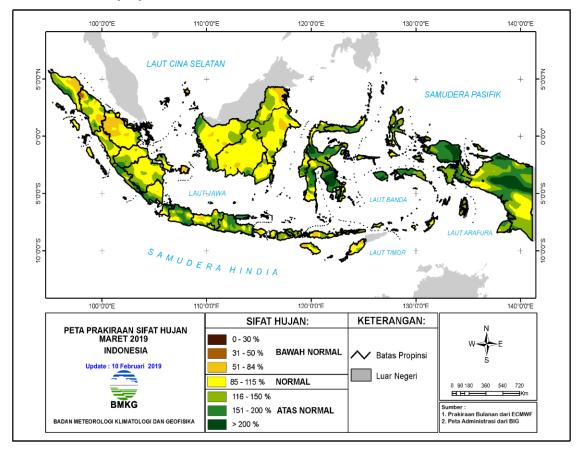
Kondisi ENSO berada pada kondisi normal sehingga pengaruhnya tidak signifikan terhadap hujan harian di wilayah indonesia.


b. SOI Bernilai NEGATIF

tekanan udara di wilayah Pasifik (Tahiti) relatif lebih Tinggi dibandingkan Australia (Darwin) terdapat penambahan suply uap air dari Samudra Pasifik ke Indonesia.



c. Pola aliran masa Udara Lapisan 850 mb


Aliran massa udara, seluruh wilayah Indonesia didominasi **angin Baratan** (udara basah).

Pada umumnya di sumba di perkirakan curah hujan bulan Maret 2019 yaitu sekitar 150-200 mm.

Untuk sifat hujan bulan Maret 2019 di Sumba di perkirakan pada umumnya di Normal dari rata-ratanya yaitu 85-115%

PENGERTIAN

A. Provisional Normal Unsur Iklim

Yaitu nilai rata – rata unsur iklim masing – masing bulan dengan periode waktu yang ditentukan secara bebas disyaratkan minimal 10 tahun.

B. Sifat Unsur Iklim

Yaitu perbandingan antara rata — rata ataupun akumulasi unsur iklim yang terjadi selama satu bulan dengan nilai normal unsur iklim bulanan disuatu tempat. Sifat unsur iklim menjadi 3 kategori :

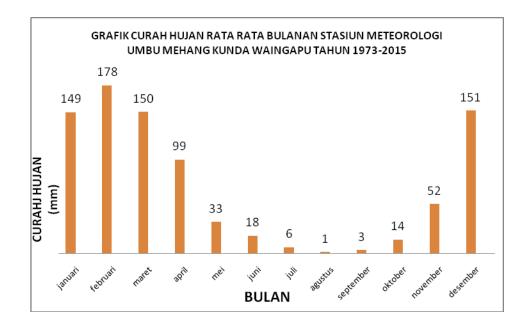
- a. Diatas Normal (AN): Jika lebih besar dari normal bulanan ditambah standar devisiasi atau lebih besar dari 115 % terhadap nilai normal bulanan untuk unsur curah hujan.
- b. Normal (N): jika diantara nilai normal bulanan di tambah standar deviasi ataupun di kurang standar deviasi atau di antara 85% ataupun 115% terhadap nilai normal bulanan untuk unsur curah hujan.
- c. Di bawah normal (BN): jika kurang dari nilai normal bulanan di kurang standar deviasi atau kurang dari 85% terhadap nilai normal bulanan untuk unsur curah hujan.

C. Curah Hujan

1. Rata – rata curah hujan bulanan:

Nilai rata – rata curah hujan masing – masing bulan dengan periode minimal 10 tahun.

2. Normal curah hujan bulanan:


Nilai rata – rata curah hujan masing – masing bulan selama periode 30 tahun.

3. Standar normal curah hujan bulanan:

Nilai rata – rata curah hujan masing – masing bulan selama periode 30 tahun dimulai dari:

- o 1 Maret 1901 s.d. 31 Maret 1930
- o 1 Maret 1931 s.d. 31 Maret 1960
- o 1 Maret 1961 s.d 31 Maret 1990
- o 1 Maret 1991 s.d 31 Maret 2020

Berikut grafik rata-rata curah hujan stasiun meteorologi Umbu Mehang Kunda Sumba Timur tahun 1973 s.d 2015

11

ANALISA UNSUR-UNSUR CUACA DI STASIUN METEOROLOGI UMBU MEHANG KUNDA SUMBA TIMUR BULAN MARET 2019

I. SUHU UDARA (°C)

I.1. SUHU UDARA PERMUKAAN HARIAN

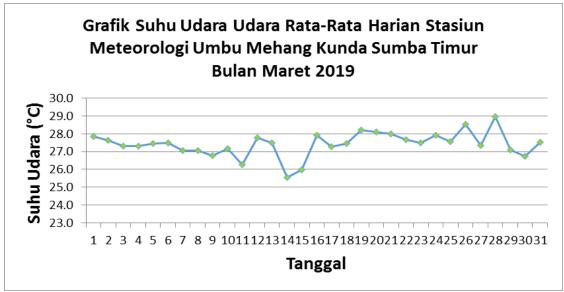
Definisi

Suhu adalah jumlah fisik yang mencirikan rata — rata gerakan acak dari molekul — molekul pada benda fisik (WMO, 2006). Suhu udara permukaan yang diukur pada ketinggian 1.20 — 1.25 m dari permukaan tanah (BMG,2006). Suhu udara didefenisikan sebagai keaadaan panas pada suatu benda atau bidang dan atau luasan pada suatu saat dan waktu. Faktor utama yang menjadi penyebab adanya suhu udara adalah sinar matahari terhadap benda/bidang atau luasan tertentu.Faktor lain yang menjadi penyebab tinggi rendahnya suhu udara adalah sifat benda/bidang, luasan tertentu seperti sifat memantul dan menyerap sinar matahari.

Satuan

Suhu udara permukaan dinyatakan dalam derajat celcius (°C)

Alat Ukur


Untuk mengukur suhu udara permukaan dipergunakan Thermometer. Suhu udara permukaan diamatai dengan menggunakan Thermometer Bola Kering.

Gambar Thermometer

Grafik Suhu Udara Permukaan

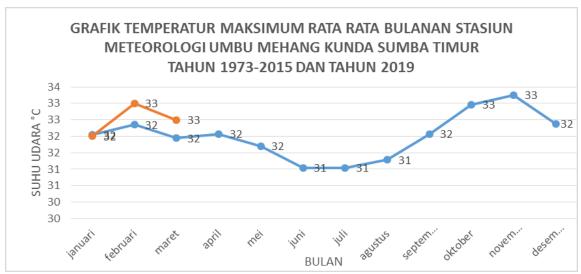
Keterangan

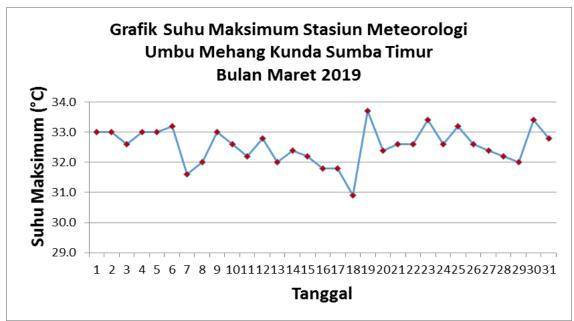
Dalam bulan Maret 2019 suhu udara harian di stasiun Meteorologi Umbu Mehang Kunda dan sekitarnya berkisar 24.0 °C sampai 33.0 °C. Dengan suhu udara rata – rata bulan Maret 2019 adalah 27.3 °C. Suhu udara rata – rata tertinggi yaitu 29.0 °C yang terjadi pada tanggal 28 Maret 2019. Sedangkan suhu udara rata –rata terendah yaitu 25.6 °C yang terjadi pada tanggal 14 Maret 2019.

I.2. SUHU UDARA MAXIMUM HARIAN

Definisi

Suhu Udara Maximum adalah suhu udara tertinggi yang diamati dan dicatat, yang terjadi pada hari itu. Suhu udara maximum diamati sekali dalam satu hari. Untuk suhu udara maksimum hari ini diamatai pada hari ini juga,pada jam 12.00 UTC (20.00 WITA).


Satuan


Suhu udara maximum dinyatakan dalam derajat celcius (°C).

Alat Ukur

Untuk mengukur suhu udara maximum dipergunakan Thermometer Maximum.

Grafik Suhu Udara Maksimum

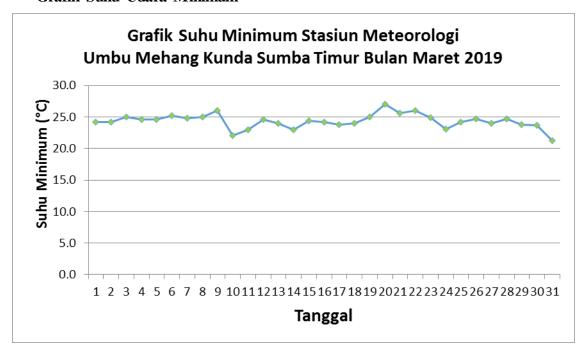
Keterangan

Suhu udara maksimum harian rata – rata bulan Maret adalah 32,0 °C. Dengan suhu udara maksimum tertinggi adalah 33,7°C yang terjadi pada tanggal 19 Maret 2019.

1.3. SUHU UDARA MINIMUM HARIAN

Definisi

Suhu Udara Minimum adalah suhu udara terendah yang diamati dan dicatat, yang terjadi pada hari itu. Suhu udara minimum diamati sekali dalam satu hari yaitu jam 00.00 UTC (08.00WITA)


Satuan

Suhu udara minimum dinyatakan dalam derajat celcius (°C).

Alat Ukur

Untuk mengukur suhu udara minimum dipergunakan Thermometer Minimum.

Grafik Suhu Udara Minimum

Keterangan

Suhu udara minimum harian rata – rata bulan Maret adalah 24,7 °C. Dengan suhu udara minimum harian terendah adalah 21,2 °C yang terjadi pada tanggal 31 Maret 2019.

II. TEKANAN UDARA (mb)

• Definisi

Tekanan udara adalah gaya persatuan luas yang disebabkan oleh berat udara diatasnya (BMG. 2006).

• Satuan

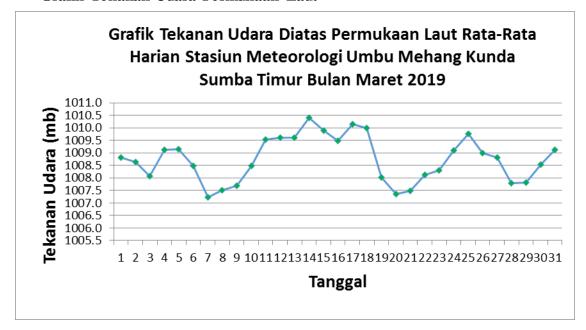
Tekanan udara dinyatakan dalam satuan milibar (mb) 1 milibar (mb) = 1 hektopascal (HPa)

Alat Ukur

Untuk mengukur tekanan udara dipergunakan Barometer. Barometer yang di pergunakan digunakan di Stasiun Meteorologi Umbu Mehang Kunda Sumba Timur adalah Barometer Air Raksa dan Barometer Digital. Alat Perekam tekanan udara disebut Barograf.

Gambar Barometer

Gambar Barograph

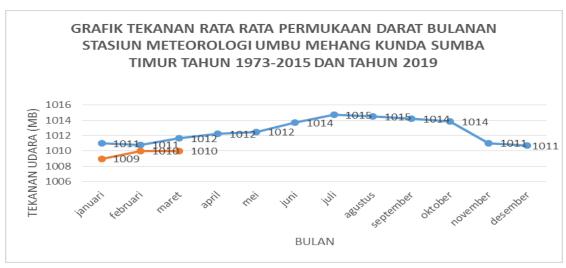

Berdasarkan data hasil pengamatan tekanan udara ,tekanan udara dipisahkan jadi 2 bagian diantaranya :

1. TEKANAN UDARA DIATAS PERMUKAAN LAUT

Selama bulan Maret 2019, tercatat bahwa tekanan udara diatas permukaan laut untuk wilayah Sumba Timur dan sekitarnya berkisar antara 1004.0 mb sampai dengan 1014.0 mb. Dengan rata – rata tekanan udara adalah 1009.0 mb.

Sedangkan tekanan udara harian rata – rata tertinggi adalah 1010.3 mb yang terjadi pada tanggal 14 Maret 2019 dan tekanan udara rata-rata terendah adalah 1006.7 mb yang terjadi pada tanggal 07 Maret 2019.

Grafik Tekanan Udara Permukaan Laut


2. TEKANAN UDARA DI ATAS PERMUKAAN DARAT


Selama bulan Maret 2019, tercatat bahwa tekanan udara di atas permukaan darat untuk Wilayah Sumba Timur dan sekitarnya berkisar antara 1005.0 mb sampai dengan 1011.0 mb. Dengan rata – rata tekanan udara adalah 1008.0 mb.

Sedangkan tekanan udara harian rata — rata tertinggi adalah 1009.1 mb yang terjadi pada tanggal 14 Maret 2019 dan tekanan udara rata — rata terendah adalah 1005.9 mb yang terjadi pada tanggal 07 Maret 2019.

Adapun grafik tekanan udara di atas permukaan darat harian rata – rata.

Grafik Tekanan Udara Permukaan Darat

III. CURAH HUJAN (mm)

• Definisi

Curah hujan adalah ketinggian air hujan yang terkumpul dalam tempat yang datar, dengan asumsi tidak menguap, tidak meresap dan tidak mengalir (BMKG, 2009).

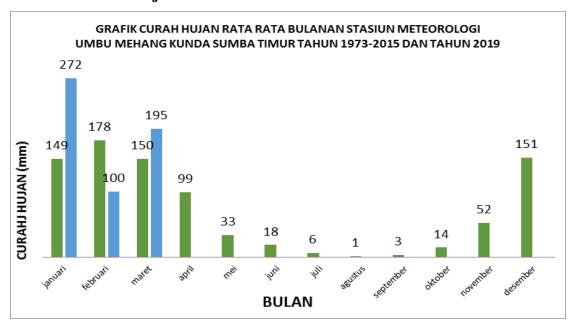
Hujan merupakan satu bentuk presipitasi (endapan) yang berwujud cairan.Presipitasi sendiri dapat berwujud padat (misalnya : salju dan hujan es) atau aerosol (seperti embun dan kabut). Hujan terbentuk apabila titik air yang terpisah jatuh ke bumi dari awan. Tidak semua hujan sampai ke permukaan bumi karena sebagian menguap ketika jatuh melalui udara kering.Hujan jenis ini disebut *Virga*, yaitu tetes air (hujan) atau es yang jatuh dari atmosfer tetapi tidak sampai ke permukaan tanah.

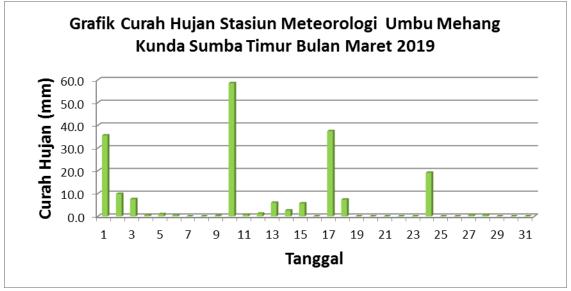
Satuan

Curah hujan dinyatakan dalam milimeter (mm)

Alat

Alat yang dipergunakan adalah penakar hujan biasa (tipe Obs) dan penakar hujan type Helman.




Gambar Penakar Hujan Type Obs

Gambar Penakar Hujan Type Helman

• Grafik Curah Hujan

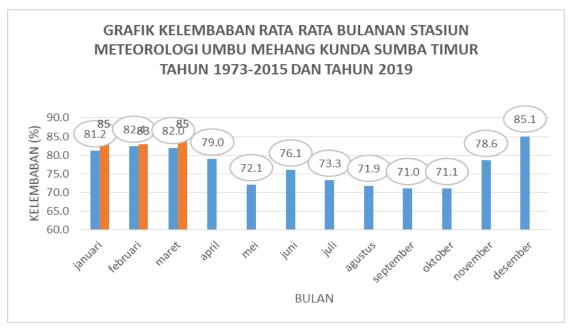
Keterangan

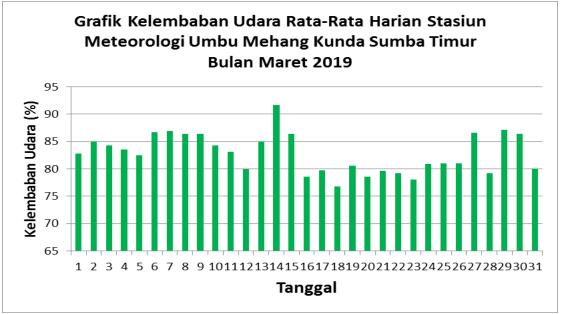
Curah hujan selama bulan Maret tahun 2019 sebesar 195.0 mm.Curah Hujan tertinggi terjadi pada tanggal 10 Maret 2019 yaitu sebesar 59 mm.

IV.KELEMBABAN UDARA

• Definisi

Lembab nisbi atau kelembaban relatif adalah perbandingan antara massa uap air yang ada di dalam satu satuan volume dengan massa uap air yang di perlukan untuk menjenuhkan satu satuan volume udara tersebut pada suhu yang sama (BMKG, 2006).


Satuan


Lembab nisbi dinyatakan dalam persen (%).

Alat

Alat yang di pergunakan untuk menentukan lembab nisbi adalah Screen Psycrometer/ Psychrometer Sangkar Tetap (Thermometer Bola Kering dan Thermometer Bola Basah) dan Thermohygrograph.

• Grafik Kelembaban Udara

Keterangan

Dalam bulan Maret 2019 kelembaban udara harian rata – rata di Stasiun Meteorologi Umbu Mehang Kunda Sumba Timur dan sekitarnya berkisar antara 75% sampai dengan 92%. Dengan kelembaban udara rata – rata bulan Maret 2019 adalah 82%.

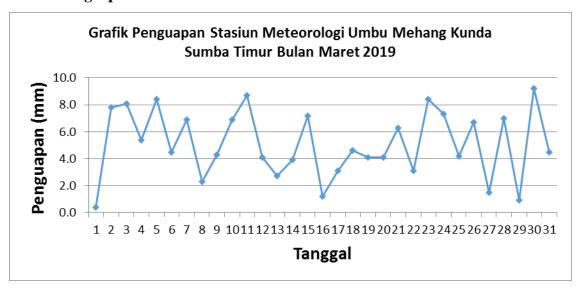
V. PENGUAPAN

• Definisi

Penguapan atau evaporasi adalah jumlah air yang menguap dari permukaan air yang terbuka atau dari tanah (WMO, 2006). Untuk menghitung jumlah penguapan yang ada maka dapat di peroleh dari, jumlah selisih tinggi air hari kemarin dengan hari ini di tambah jumlah curah hujan. Pengukuran jumlah penguapan di lakukan satu kali dalam satu hari pada jam 00.00 UTC.

• Satuan

Penguapan dinyatakaan dalam milimeter (mm).


Alat

Alat yang digunakan untuk mengukur penguapan adalah panci penguapan terbuka (Open Pan Evaporimeter).

Gambar Panci Penguapan

Grafik Penguapan

Keterangan

Akumulasi penguapan selama bulan Maret 2019 adalah 158 mm. Penguapan terbesar terjadi pada tanggal 30 Maret 2019 yaitu sebesar 9.4 mm.

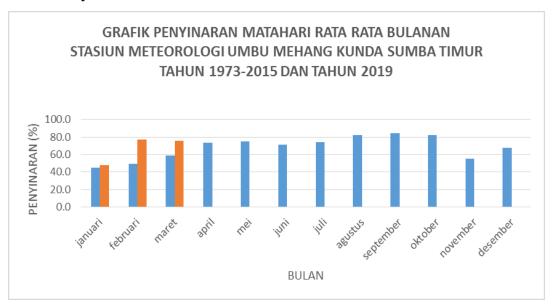
VI.PENYINARAN MATAHARI

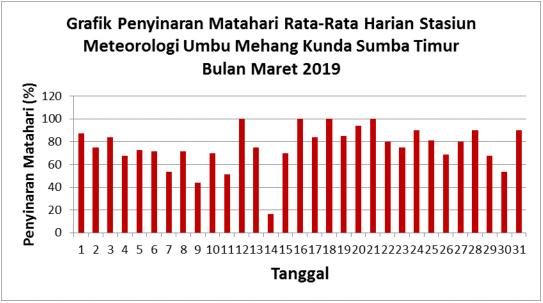
Definisi

Penyinaran matahari yang diamati di bedakan dalam dua jenis yaitu meliputi lamanya penyinaran matahari (durasi penyinaran matahari) dan intensitas radiasi matahari. Durasi penyinaran matahari selama periode tertentu adalah jumlah pada periode itu untuk pemancaran radiasi matahari melampaui 120 W m⁻² (WMO, 2006). Sedangkan intensitas radiasi matahari adalah besarnya energi yang di pancarkan oleh matahari per satuan waktu.

Satuan

Satuan untuk menyatakan durasi penyinaran matahari dinyatakaan dalam persen (%) dan jam. Untuk satuan dalam persen (%) digunakan untuk kepentingan klimatologi dan satuan dalam jam digunakan untuk kepentingan meteorologi. Sedangkan satuan untuk menyatakan intensitas radiasi matahari dinyatakan dalam Watt/ m².


Alat


Untuk mengukur durasi penyinaran matahari dipergunakan Campbell Stokes (Sun Shine Recorder) dan untuk mengukur intensitas radiasi matahari dipergunakan Solarimeter.

Gambar Campbell Stokes

• Grafik Penyinaran Matahari

Keterangan

Lamanya penyinaran matahari rata – rata pada bulan Maret 2019 adalah 76%. Dengan lamanya penyinaran tertinggi terbesar 100%. Pada bulan Maret 2019 penyinaran terendah pada tanggal 14 Maret 2019 yaitu sebesar 16 %

VII. ANGIN

• Definisi

Angin adalah udara yang bergerak horizontal terhadap permukaan bumi (United Kingdom Civil Aviation Authority, 2001).

Arah angin adalah arah dari mana datangnya angin bertiup (BMG, 2006).

Kecepatan angin adalah jumlah vector tiga dimensi dengan fluktuasi skala kecil yang acak pada ruang dan waktu yang berpadu pada aliran skala besar yang teratur (WMO, 2006).

Adapun arah dan kecepatan angin permukaan diukur pada ketinggian 10 m dari permukaan tanah (BMG, 2006).

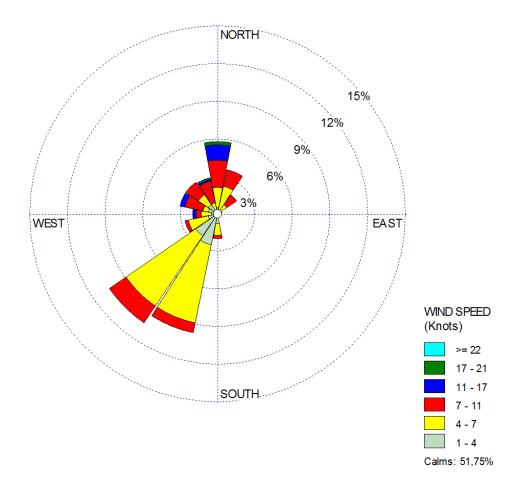
• Satuan

Arah angin dalam satuan derajat yang di ukur searah jarum jam mulai dari titik utara yang sebenarnya (true north).

Kecepatan angin dinyatakan dalam Knot (KT).

1 Knot = 1.85 km/jam.

Alat


Untuk mengukur arah dan kecepatan angin dipergunakan Anemometer.

Gambar Anemometer

Arah dan Kecepatan Angin Bulan Maret 2019

Arah angin terbanyak pada bulan Maret 2019 adalah dari Barat Daya dengan kecepatan rata — rata mencapai 08 knot. Dengan angin kecepatan maksimum adalah 17 knot dengan arah 350°

PELAYANAN UMUM

I. PELAYANAN PENERBANGAN

Berdasarkan hasil data pengamatan cuaca selama bulan Maret 2019, dalam hal ini banyak hasil observasi cuaca khusus untuk pelayanan penerbangan yang berupa QAM, SPECI, METAR dapat dilihat dalam bentuk tabel di bawah ini.

Tabel : Informasi Pelayanan Meteorologi Untuk penerbangan Stasiun Meteorologi Umbu Mehang Kunda Sumba Timur Bulan Maret 2019

BULAN	HASIL PENGAMATAN			
BULAN	QAM	SPECI	METAR	
Maret 2019	318	28	720	

Keterangan:

- QAM: merupakan informasi cuaca yang diberikan untuk kepentingan *Take*Off (Lepas Landas) dan Landing (Pendaratan) pesawat terbang.
- SPESI : Merupakan informasi cuaca khusus yang harus dilaporkan setiap terjadi perubahan cuaca yang signifikan (bermakna) seperti :terjadi thunderstorm (badai guntur),terjadi hujan,terjadi peruban arah kecepatan angin secara tiba – tiba dan lain – lain.Informasi ini dilaporkan saat keadaan cuaca mulai terjadi dan setelah cuaca selesai terjadi.
- METAR: Merupakan informasi cuaca rutin untuk kepentingan penerbangan yang di buat setiap jam atau ½ jam sekali pada jam penuh atau jam tengahan.

II. LAPORAN PRODUK METEOROLOGI PUBLIK

Laporan produk meteorologi publik merupakan laporan informasi mengenai kegiatan publikasi data – data hasil pengamatan yang di gunakan atau dimanfaatkan oleh BMKG, instansi di luar BMKG dan masyarakat umum yang membutuhkan. Hasil produk meteorologi publik dapat di lihat dalam tabel di bawah ini

Tabel.Laporan Produk Meteorologi Publik Stasiun Meteorologi Umbu Mehang Kunda Sumba Timur BulanMaret 2019

N	Jenis	Unit	INSTANSI P	ENERIMA	PUBLIKASI	
			DI LINGKUNGAN BMKG		DI LUAR BMKG	
O Publikasi Kerja		Kerja	UNIT KERJA	JML	UNIT KERJA	JML
1	2	3	4	5	6	7
1	Data	Stamet	Deputi bidang meteorologi	1 lbr	-	-
	Klimatologi	Umbu	Kepala Balai BMKG Wil.III	Sda		-
	-	Mehang	Koord. BMKG NTT	Sda		
		Kunda	Ka. Stasiun Lasiana Kupang	Sda		
		Sumba				
		Timur				
2	Buletin	Sda	Sestama BMKG	1 Exp	Bupati Sumba	1
	Informasi		Deputi Bdg. Meteorologi	Sda	Timur Dinas	Exp
	Meteorologi		Stamet, Staklim, Stageof	Sda	Pertanian	Sda
			se NTT		Sumba Timur	
					dll	
3	QAM	Sda		-	Bandar Umbu	307
					Mehang Kunda	
4	METAR	Sda	BMKG Via CMSS	720	-	-
5	SPECI	Sda	BMKG Via CMSS	40	-	-

III. INFORMASI CUACA BERMAKNA

Meteorologi badai guntur dikenal TS Dalam ilmu dengan istilah atau Thunderstorm. Badai terjadi munculnya guntur biasanya saat awan Cumulonimbus (CB). Awan Cumulonimbus (Cb) adalah awan Cumulus yang besar terbentuk seperti bunga kol dan menjulang tinggi sebagai awan hujan yang di sertai angin kencang. Dasar awan Cumulunimbus (Cb) sekitar 100 – 600 meter, sedangkan puncaknya mencapai ketinggian sampai kurang lebih 20 km.

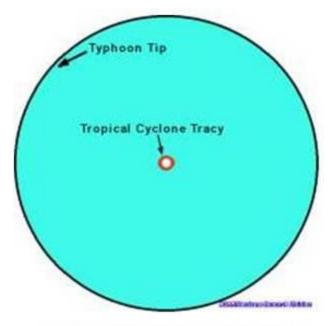
Dalam awan Cumulunimbus dapat terjadi batu es (hail), guruh, kilat, hujan deras dan kadang – kadang terjadi angin puting beliung. Adapun fenomena cuaca yang sering ditimbulkan oleh awan Cumulonimbus (Cb) antara lain : Petir, Puting Beliung dan Hujan Es.

- *Petir* adalah lompatan bungan api listrik raksasa antara dua masa yang mempunyai perbedaan medan listrik. Petir adalah hasil pelepasan muatan listrik di awan. Energi dari pelepasan itu begitu besarnya sehingga menimbulkan rentetan cahaya, panas dan bunyi yang sangat kuat yaitu guntur atau halilintar. Karena sedemikian besarnya ketika petir itu melesat, tubuh awan akan terang benderang di buatnya sebagai akibat udara yang terbelah.
- *Hujan es dan angin puting beliung* berasal dari awan bersel tunggal berlapis lapis (Cumulunimbus) yang dekat dengan permukaan bumi. Dapat juga berasal dari multi sel awan. Pertumbuhannya vertikal dengan luasan area horizontal sekitar 3 5 km atau lebih. Jadi wajar kalau peristiwa ini bersifat local dan tidak merata. Jenis awan berlapis lapis ini menjulang kearah vertikal sampai dengan ketinggian 30.000 feet lebih. Jenis awan berlapis lapis ini biasanya berbentuk bunga kol.

data TS dan RA yang terjadi Selama bulan Maret 2019

Tabel: Laporan Cuaca Bermakna (TS DAN RA) Stasiun Meteorologi Umbu Mehang Kunda Sumba Timur **Bulan Maret 2019**

Tanggal Kejadian	Durasi / Waktu	Cuaca Bermakna
1	1 Jam 30 Menit	TSRA
2	30 Menit	TSRA
3	35 Menit	TSRA
4	1 Jam 40 Menit	RA
5	30 Menit	RA
6	1 Jam 30 Menit	RA
9	45 Menit	RA
10	1 Jam	TSRA
11	30 Menit	RA
12	30 Menit	RA
13	1 Jam 30 Menit	RA
14	50 Menit	TSRA
15	1 Jam 30 Menit	RA
17	50 Menit	TSRA
18	1 Jam	RA
21	30 Menit	RA
24	1 Jam 30 Menit	TSRA
25	40 Menit	TSRA
27	30 Menit	TSRA
28	50 Menit	RA
29	40 Menit	TSRA
30	2 Jam 15 Menit	TS


SERBA SERBI METEOROLOGI

SIKLON TROPIS

Apakah Siklon Tropis itu?

Siklon tropis merupakan badai dengan kekuatan yang besar. Radius rata-rata siklon tropis mencapai 150 hingga 200 km. Siklon tropis terbentuk di atas lautan luas yang umumnya mempunyai suhu permukaan air laut hangat, lebih dari 26.5 °C. Angin kencang yang berputar di dekat pusatnya mempunyai kecepatan angin lebih dari 63 km/jam.

Secara teknis, siklon tropis didefinisikan sebagai sistem tekanan rendah non-frontal yang berskala sinoptik yang tumbuh di atas perairan hangat dengan wilayah perawanan konvektif dan kecepatan angin maksimum setidaknya mencapai 34 knot pada lebih dari setengah wilayah yang melingkari pusatnya, serta bertahan setidaknya enam jam.

Perbandingan ukuran Typhoon Tip (1979) dan Siklon Tropis Tracy (1977)

Kadangkala di pusat siklon tropis terbentuk suatu wilayah dengan kecepatan angin relatif rendah dan tanpa awan yang disebut dengan mata siklon. Diameter mata siklon bervariasi mulai dari 10 hingga 100 km. Mata siklon ini dikelilingi dengan dinding mata, yaitu wilayah berbentuk cincin yang dapat mencapai ketebalan 16 km, yang merupakan wilayah dimana terdapat kecepatan angin tertinggi dan curah hujan terbesar.

Masa hidup suatu siklon tropis rata-rata berkisar antara 3 hingga 18 hari. Karena energi siklon tropis didapat dari lautan hangat, maka siklon tropis akan melemah atau punah ketika bergerak dan memasuki wilayah perairan yang dingin atau memasuki daratan.

Siklon tropis dikenal dengan berbagai istilah di muka bumi, yaitu "badai tropis" atau "typhoon" atau "topan" jika terbentuk di Samudra Pasifik Barat, "siklon" atau "cyclone" jika terbentuk di sekitar India atau Australia, dan "hurricane" jika terbentuk di Samudra Atlantik.

Kecepatan Angin Maksimum

Yang dimaksud dengan kecepatan angin maksimum adalah angin permukaan rata-rata 10 menit tertinggi yang terjadi di dalam wilayah sirkulasi siklon. Angin dengan kecepatan tertinggi ini biasanya terdapat di wilayah cincin di dekat pusat siklon, atau jika siklon ini memiliki mata, berada di dinding mata.

Ukuran Siklon Tropis

Ukuran siklon tropis menyatakan diameter wilayah yang mengalami gale force wind. Ukuran siklon tropis bervariasi. mulai dari 50 km (Cyclone Tracy, 1977) hingga 1100 km (Typhoon Tip, 1979).

Daerah pertumbuhan siklon tropis mencakup Atlantik Barat, Pasifik Timur, Pasifik Utara bagian barat, Samudera Hindia bagian utara dan selatan, Australia dan Pasifik Selatan. Sekitar 2/3 kejadian siklon tropis terjadi di belahan bumi bagian utara. Sekitar 65% siklon tropis terbentuk di daerah antara 10° - 20° dari ekuator, hanya sekitar 13% siklon tropis yang tumbuh diatas daerah lintang 20° , sedangkan di daerah lintang rendah $(0^{\circ}$ - 10°) siklon tropis jarang terbentuk.

Daerah Pertumbuhan

Daerah pertumbuhan siklon tropis dapat dibagi menjadi 7 (tujuh) wilayah. Ini mencakup wilayah lautan di seluruh dunia.

Nomor	Nama Daerah Pertumbuhan	Luasan Wilayah
1	Atlantik Utara	Samudra Atlantik Utara, Laut Karibia dan Teluk Meksiko
2	Pasifik Timur Laut	Amerika Utara hingga 180° BT
3	Pasifik Barat Laut	Sebelah Barat 180° BT, termasuk Laut Cina Selatan
4	Hindia Utara	Teluk Benggala dan Laut Arab
5	Hindia Selatan	Samudra Hindia Selatan sebelah Barat 100° BT
6	Hindia Tenggara / Australia	Bumi Belahan Selatan 100 - 142° BT
7	Pasifik Barat Daya / Australia	Bumi Belahan Selatan sebelah Timur 142° BT